
Hardware Performance
Monitoring and Dynamic

Instrumentation

Shirley Moore
shirley@cs.utk.edu

Alliance Performance Team Workshop

Urbana, IL March 14, 2002

PAPI Development Team

• Philip Mucci, Technical Lead
• Jack Dongarra
• Kevin London
• Daniel Terpstra
• Haihang You

Hardware Counters

• Small set of registers that count
events, which are occurrences of
specific signals related to the
processor’s function

• Monitoring these events facilitates
correlation between the structure
of the source/object code and the
efficiency of the mapping of that
code to the underlying
architecture.

Overview of PAPI

• Performance Application Programming
Interface

• The purpose of the PAPI project is to
design, standardize and implement a
portable and efficient API to access the
hardware performance monitor
counters found on most modern
microprocessors.

• Parallel Tools Consortium project
http://www.ptools.org/

PAPI Counter Interfaces

• PAPI provides three interfaces to the
underlying counter hardware:
1. The low level interface manages hardware

events in user defined groups called
EventSets.

2. The high level interface simply provides the
ability to start, stop and read the counters
for a specified list of events.

3. Graphical tools to visualize information.

PAPI Implementation

Tools!

PAPI Low Level
PAPI High Level

Hardware Performance Counter

Operating System

Kernel Extension

PAPI Machine
Dependent SubstrateMachine

Specific
Layer

Portable
Layer

PAPI Preset Events

• Proposed standard set of events
deemed most relevant for
application performance tuning

• Defined in papiStdEventDefs.h
• Mapped to native events on a

given platform
–Run tests/avail to see list of PAPI

preset events available on a platform

PAPI 2.1 Release

• Platforms
– Linux/x86, Windows 2000

• Requires patch to Linux kernel, driver for
Windows

– Linux/IA-64
– Sun Solaris/Ultra 2.8
– IBM AIX/Power

• Requires pmtoolkit (available from
http://alphaworks.ibm.com/)b

– SGI IRIX/MIPS
– Cray T3E/Unicos

• Fortran and C binding and MATLAB
wrappers

High-level Interface

• Meant for application programmers
wanting coarse-grained
measurements

• Not thread safe
• Calls the lower level API
• Allows only PAPI preset events
• Easier to use and less setup

(additional code) than low-level

High-level API

• C interface
PAPI_start_counters
PAPI_read_counters
PAPI_stop_counters
PAPI_accum_counters
PAPI_num_counters
PAPI_flops

• Fortran interface
PAPIF_start_counters
PAPIF_read_counters
PAPIF_stop_counters
PAPIF_accum_counters
PAPIF_num_counters
PAPIF_flops

PAPI_flops

• int PAPI_flops(float *real_time, float
*proc_time, long_long *flpins, float *mflops)
– Only two calls needed, PAPI_flops before and after

the code you want to monitor
– real_time is the wall-clocktime between the two calls
– proc_time is the “virtual” time or time the process

was actually executing between the two calls (not as
fine grained as real_time but better for longer
measurements)

– flpins is the total floating point instructions executed
between the two calls

– mflops is the Mflop/s rating between the two calls

PAPI High-level Example

long long values[NUM_EVENTS];
unsigned int

Events[NUM_EVENTS]={PAPI_TOT_INS,PAPI_TOT_CYC};
/* Start the counters */
PAPI_start_counters((int*)Events,NUM_EVENTS);
/* What we are monitoring? */
do_work();
/* Stop the counters and store the results in values */
retval = PAPI_stop_counters(values,NUM_EVENTS);

Low-level Interface

• Increased efficiency and
functionality over the high level
PAPI interface

• About 40 functions
• Obtain information about the

executable and the hardware
• Thread-safe
• Fully programmable
• Callbacks on counter overflow

Low-level Functionality

• Library initialization
PAPI_library_init, PAPI_thread_init,

PAPI_shutdown
• Timing functions

PAPI_get_real_usec,
PAPI_get_virt_usec
PAPI_get_real_cyc, PAPI_get_virt_cyc

• Inquiry functions
• Management functions
• Simple lock

PAPI_lock/PAPI_unlock

Event sets

• The event set contains key information
– What low-level hardware counters to use

– Most recently read counter values

– The state of the event set (running/not
running)

– Option settings (e.g., domain, granularity,
overflow, profiling)

• Event sets can overlap if they map to the
same hardware counter set-up.
– Allows inclusive/exclusive measurements

Event set Operations

• Event set management
PAPI_create_eventset,
PAPI_add_event[s], PAPI_rem_event[s],
PAPI_destroy_eventset

• Event set control
PAPI_start, PAPI_stop, PAPI_read,
PAPI_accum

• Event set inquiry
PAPI_query_event, PAPI_list_events,...

Simple Example

#include "papi.h“
#define NUM_EVENTS 2
int Events[NUM_EVENTS]={PAPI_FP_INS,PAPI_TOT_CYC}, EventSet;

long_long values[NUM_EVENTS];
/* Initialize the Library */
retval = PAPI_library_init(PAPI_VER_CURRENT);
/* Allocate space for the new eventset and do setup */
retval = PAPI_create_eventset(&EventSet);
/* Add Flops and total cycles to the eventset */
retval = PAPI_add_events(&EventSet,Events,NUM_EVENTS);
/* Start the counters */
retval = PAPI_start(EventSet);

do_work(); /* What we want to monitor*/

/*Stop counters and store results in values */
retval = PAPI_stop(EventSet,values);

Using PAPI with Threads

• After PAPI_library_init need to register
unique thread identifier function

• For Pthreads

retval=PAPI_thread_init(pthread_self, 0);

• OpenMP

retval=PAPI_thread_init(omp_get_thread_num, 0);

• Each thread responsible for creation,
start, stop and read of its own counters

Using PAPI with Multiplexing

• Multiplexing allows simultaneous use
of more counters than are supported
by the hardware.

• PAPI_multiplex_init()
– should be called after PAPI_library_init()

to initialize multiplexing
• PAPI_set_multiplex(int *EventSet);

–Used after the eventset is created to turn
on multiplexing for that eventset

• Then use PAPI like normal

Issues with Multiplexing

• Some platforms support hardware
multiplexing, on those that don’t
PAPI implements multiplexing in
software.

• The more events you multiplex,
the more likely the representation
is not correct.

Native Events

• An event countable by the CPU can
be counted even if there is no
matching preset PAPI event

• Same interface as when setting up
a preset event, but a CPU-specific
bit pattern is used instead of the
PAPI event definition

Callbacks on Counter Overflow

• PAPI provides the ability to call
user-defined handlers when a
specified event exceeds a specified
threshold.

• For systems that do not support
counter overflow at the OS level,
PAPI sets up a high resolution
interval timer and installs a timer
interrupt handler.

PAPI_overflow

• int PAPI_overflow(int EventSet, int
EventCode, int threshold, int flags,
PAPI_overflow_handler_t handler)

• Sets up an EventSet such that
when it is PAPI_start()’d, it begins
to register overflows

• The EventSet may contain multiple
events, but only one may be an
overflow trigger.

Statistical Profiling

• PAPI provides support for
execution profiling based on any
counter event.

• PAPI_profil() creates a histogram
of overflow counts for a specified
region of the application code.

Perfometer

• Application is instrumented with PAPI
– call perfometer()
– Call mark_perfometer(Color)

• Application is started. At the call to
perfometer, signal handler and timer are set
to collect and send the information to a Java
applet containing the graphical view.

• Sections of code that are of interest can be
designated with specific colors
– Using a call to mark_perfometer(‘color’)

• Real-time display or trace file

Perfometer Display
Machine info

Process &
Real time

Flop/s Rate

Flop/s Min/Max

Perfometer Parallel Interface

Third-party Tools
that use PAPI

• DEEP/PAPI (Pacific Sierra)
http://www.psrv.com/deep_papi_top.html

• TAU (Allen Mallony, U of Oregon)
http://www.cs.uoregon.edu/research/paracomp/tau/

• SvPablo (Dan Reed, U of Illinois)
http://vibes.cs.uiuc.edu/Software/SvPablo/svPablo.htm

• Scalea (Thomas Fahringer, U. Vienna)
http://www.par.univie.ac.at/project/scalea/

• Vprof (Curtis Janssen, Sandia Livermore
Lab) http://aros.ca.sandia.gov/~cljanss/perf/vprof/

• Cluster Tools (Al Geist, ORNL)
• DynaProf (Phil Mucci, UTK)

http://www.cs.utk.edu/~mucci/dynaprof/

DynaProf

An Object Code Instrumentation System for Dynamic Profiling

Philip J. Philip J. Mucci Mucci muccimucci@cs.utk.edu@cs.utk.edu November, 2001November, 2001

What is DynaProf?

• A portable tool to instrument a
running executable with Probes
that monitor application
performance.

• Simple command line interface.
• Open Source Software
• A work in progress…

DynaProf Methodology

• Make collection of run-time
performance data easy by:
–Avoiding instrumentation and

recompilation
–Using the same tool with different

probes
–Providing useful and meaningful

probe data
–Providing different kinds of probes
–Allowing custom probes

Why the “Dyna”?

• Instrumentation is selectively
inserted directly into the program’s
address space.

• Why is this a better way?
–No perturbation of compiler

optimizations
–Complete language independence
–Multiple Insert/Remove

instrumentation cycles

DynaProf Design

• GUI, command line & script driven
user interface

• Uses GNU readline for command
line editing and command
completion.

• Instrumentation is done using:
–Dyninst on Linux, Solaris and IRIX
–DPCL on AIX

DynaProf Commands

load <executable>
list [module pattern]
use <probe> [probe args]
instr module <module> [probe args]
instr function <module> <function> [probe

args]
stop
continue
run [args]
Info
unload

Dynaprof Probes

• papiprobe
• wallclockprobe
• perfometerprobe

DynaProf Probe Design

• Can be written in any compiled
language

• Probes export 3 functions with a
standardized interface.

• Easy to roll your own (<1day)
• Supports separate probes for

MPI/OpenMP/Pthreads

Future development

• GUI development
• Additional probes

–Perfex probe
–Vprof probe

• Better support for parallel
applications

For More Information

• http://icl.cs.utk.edu/papi/
–Software and documentation
–Reference materials
– Papers and presentations
–Third-party tools
–Mailing lists

• http://www.ncsa.uiuc.edu/UserInfo/Resources/Software/Tools/PAPI/

Current and Future Work

• Ports – P4, Power4, McKinley,
Compaq Alpha

• Accuracy and efficiency issues
• Infrastructure for dynamic

instrumentation of parallel
applications (DPCL?)

• Experimentation with IA-64
performance monitoring features
(e.g., event qualification, EARs)

